الاقتصادية - الموقع الرسمي لأخبار الاقتصاد والأسواق | الاقتصادية

الاثنين, 20 أكتوبر 2025 | 27 رَبِيع الثَّانِي 1447
Logo
شركة الاتحاد التعاوني للتأمين11
(-0.45%) -0.05
مجموعة تداول السعودية القابضة206.7
(-0.63%) -1.30
الشركة التعاونية للتأمين133
(-1.85%) -2.50
شركة الخدمات التجارية العربية106
(2.02%) 2.10
شركة دراية المالية5.66
(-0.35%) -0.02
شركة اليمامة للحديد والصلب37.96
(-1.09%) -0.42
البنك العربي الوطني25.48
(0.63%) 0.16
شركة موبي الصناعية13
(-3.70%) -0.50
شركة البنى التحتية المستدامة القابضة37.1
(0.82%) 0.30
شركة إتحاد مصانع الأسلاك25
(-1.26%) -0.32
بنك البلاد29.34
(0.62%) 0.18
شركة أملاك العالمية للتمويل12.82
(-1.31%) -0.17
شركة المنجم للأغذية59
(-2.64%) -1.60
صندوق البلاد للأسهم الصينية12.18
(-1.62%) -0.20
الشركة السعودية للصناعات الأساسية61.9
(0.24%) 0.15
شركة سابك للمغذيات الزراعية124.8
(1.05%) 1.30
شركة الحمادي القابضة35.56
(1.66%) 0.58
شركة الوطنية للتأمين15.37
(-1.98%) -0.31
أرامكو السعودية25.16
(-0.55%) -0.14
شركة الأميانت العربية السعودية20.7
(-3.04%) -0.65
البنك الأهلي السعودي38.5
(-0.31%) -0.12
شركة ينبع الوطنية للبتروكيماويات35
(0.46%) 0.16

طور فريق من الباحثين في اليابان تقنية جديدة تعتمد على الذكاء الاصطناعي لقياس معدلات تآكل المحامل ذات العناصر الدحروجية الي تعرف باسم "الرولمان بلي" داخل الماكينات وبالتالي التنبؤ بالفترة الباقية من عمرها الافتراضي.

وتعتبر المحامل ذات العناصر الدحروجية مكونا أساسيا في مختلف أنواع الماكينات وهي تتكون من حلقات معدنية تفصل بينها عناصر دوارة وتدور هذه الحلقات أثناء تشغيل الماكينة بمعدلات احتكاك ضئيلة للغاية. ولكن بمرور الوقت تتعرض هذه الحلقات للتآكل وهو ما يؤثر على سلامة الماكينات بشكل عام.

ونجح فريق الباحثين بجامعة أوساكا اليابانية في استخدام تقنيات الذكاء الاصطناعي من أجل التنبؤ بالفترة المتبقية من عمر الرولمان بلي اعتمادا على قياس نسب التذبذب أثناء تشغيل الماكينات حيث أنه من المعروف أنه كلما زادت نسبة تآكل المحامل كلما ارتفعت درجة التذبذب داخل الماكينات.

وقام الباحثون بتغذية منظومة الذكاء الاصطناعي برسوم بيانية ثنائية الأبعاد لمعدلات التذبذب داخل الماكينات من أجل تدريبها على تمييز الاختلاف بين طبيعة أداء المحامل السليمة والمتآكلة بحيث تستطيع المنظومة في وقت لاحق تمييز الاختلاف وبالتالي التنبؤ بالعمر الافتراضي المتبقي لهذه المحامل.

ونقل موقع "تيك إكسبلور" عن الباحث ماساكي كيتاي وهو أحد المشاركين في تطوير المنظومة الجديدة قوله إن "التنبؤ بالعمر المتبقي للمحامل ذات العناصر الدحروجية عادة ما يكون مسألة صعبة بسبب تباين خصائص التذبذب داخل الماكينات"، مضيفا أن منظومة الذكاء الاصطناعي الجديدة ساعدت الخبراء على وضع نسق واحد للتنبؤ بمعدل التآكل يصلح لجميع الماكينات. مشيرا إلى أن الطريقة الجديدة قامت بخفض احتمالات الخطأ في التنبؤ بنسبة 32%.

ويؤكد الباحث كين إيشي فوكاي عضو الفريق أن إجراء عمليات الصيانة للماكينات الصناعية اعتمادا على هذه الفكرة الجديدة ربما يؤدي إلى تخفيف الأعباء البيئية والخسائر الاقتصادية أثناء التصنيع. مشيرا إلى أنه من الممكن مستقبلا تطوير معادلات خوارزمية لقياس معدلات تآكل مختلف المكونات الميكانيكية للآلات.

للإشتراك في النشرة
تعرف على أحدث الأخبار والتحليلات من الاقتصادية